

Energy Demand Reduction for FSU's Central Utility Plant

Group members: Edgardo Cordero, Alec Schoengrund, Steven Decker, Mira Meyers, Keaton Zargham, and Juan Villalobos

Team Introductions

Edgardo Cordero Project Manager

Mira Meyers Quality Control Engineer

Steven Decker HVAC Engineer

Keaton Zargham Data Analyst

Alec Schoengrund Mechanical Design Engineer

Juan Villalobos Energy Auditor

💮 💮 FAMU-FSU Engineering

Edgardo Cordero

Sponsor and Mentor

Cameron Griffith, Solutions Advisor LEED AP, CEM, CDSM

Dr. Juan Ordonez, Professor Thermodynamic Optimization of Advanced Energy Systems

Edgardo Cordero

Objective

To research, study, evaluate and propose a project that reduces the CUP facility's Electric Utility bill by reducing peak demand and/or the overall electric consumption to generate a financial payback to FSU.

Project Background

Large scale operations such as Florida State University spend Millions of dollars on utilities each year.

5

Edgardo Cordero

FSU's Current Standing

- FSU spends roughly \$22 million per year on utilities.
- Total of 3 boilers
 - Used to either heat campus directly or to supply re-heat for comfort cooling
 - 1 2 in use, 1 is redundant
- Total of 21 chillers
 - Campus requires a maximum of 80% of these chillers on the hottest days
 - Minimum of 1 2 in winter
 - Recently replaced three 25-year-old chillers with 4 new chillers
 - Recently overhauled 19-year-old chillers

FSU's Central Utility Plant

- Leader of campus energy reduction initiatives.
- Provides utility services to the entire campus.
 - Electricity, steam, chilled water, etc.
 - All Chillers and Boilers connected via grid system
 - Underground 15kV system
- Chiller Plants account for 38% of total campus energy consumption

2018 FSU Energy Consumption

2018 FSU Demand

Cost of Usage	Den	nand Charge
\$ 1,067,788.40	\$	285,600.00
\$ 1,114,057.60	\$	317,800.00
\$ 1,121,410.20	\$	322,000.00
\$ 1,171,963.70	\$	309,400.00
\$ 1,250,635.90	\$	303,800.00
\$ 1,360,595.70	\$	347,200.00
\$ 1,450,772.00	\$	338,800.00
\$ 1,430,436.30	\$	365,400.00
\$ 1,461,506.40	\$	371,000.00
\$ 1,385,367.50	\$	355,600.00
\$ 1,146,327.30	\$	337,400.00
\$ 1,074,664.60	\$	303,800.00

🐨 💮 FAMU-FSU Engineering

8

Juan Villalobos

Demand Range (kW)	Hours in this Range
11,000-12,000	612.8
12,000-13,000	726.9
13,000-14,000	868.9
14,000-15,000	805.5
15,000-16,000	1238.4
16,000-17,000	1782
17,000-18,000	1564.4
18,000-19,000	1111.7
19,000-20,000	917.4
20,000-21,000	754.1
21,000-22,000	637
22,000-23,000	531.7
23,000-24,000	386.8
24,000-26,000	293.3

Juan Villalobos

10

Juan Villalobos

Key Goals

Assumptions

Reduce annual utility cost by at least 15%	Propose a solution that will have an ROI of 7 - 10 years.	No prototyping		Nc bu	No hard budget	
Perform energy audits and data analysis of CUP	Formally present findings to Trane and FSU		۲ instal preve	No llation ntions		

Juan Villalobos

Markets

Primary Markets include **Florida State University** and **TRANE** as the main benefactors for the outcome of this project.

FAMU-FSU Engineering

Possible **secondary markets** include medium to large corporate office buildings; other colleges, universities and institutions, government buildings, healthcare facilities, data centers and other commercial real estates.

Customer Needs

Need: Reduce peak load consumption

• Find a way to store energy during non-peak hours that then can be discharged during peak hours.

Need: Propose a merchantable, engineered solution to stakeholders

· Offer a feasible solution that FSU will invest in

Need: Preferably, proposed solution should have an ROI of 7 years

 TRANE would like to see an ROI within 20 years and FSU typically invests in projects with a ROI of 7 –10 years

Need: The solution must be aesthetically pleasing

• The final product can include an artistic element or structure around it

Functional Decomposition

Steven Decker

Preliminary Team Concepts

- Utilize solar panels to offset peak demand directly
- Charge Battery packs from grid during off-peak hours to discharge during peak hours
- Utilize thermal storage tanks to offset peak demand
- Introduce Innovative Speed Bump "SmartBump"

Five Most Important Points from this Lecture

- 1. FSU spends 22 million dollars on utilities each year. Analysis will project viable solutions.
- 2. The objective of this project is to save money at FSU's central utility plant by reducing the peak demand and/or overall consumption.
- 3. The team aims to propose solutions using existing technologies while also creating innovative ideas to solve these problems.
- 4. No physical prototyping will be done for this project.
- 5. The team will analyze demand and consumption at the plant, building, and user level in order to optimize every aspect of energy use.

Questions?

Email: **Team Members:** Edgardo Cordero <u>e</u> Steven Decker S Alec Schoengrund 2 Mira Meyers Keaton Zargham Juan Villalobos

edc15@my.fsu.edu
sd16b@my.fsu.edu
abs16d@my.fsu.edu
<u>mam15x@my.fsu.edu</u>
<u>ksz17@my.fsu.edu</u>
jv15b@my.fsu.edu

References

Hospital Central Utility Plant: Projects: Burns & McDonnell. (n.d.). Retrieved September 27, 2019, from https://www.burnsmcd.com/projects/hospital-central-utility-plant.

United States (English). (n.d.). Retrieved September 28, 2019, from https://www.trane.com/Index.aspx.

(n.d.). Retrieved September 29, 2019, from

https://m.fsu.edu/employee/device/large/maps/map?filter=&_tab=browse&_switchtab=1&feed=main_campu s_map_2017&id=main_campus_map_2017/FSU+Main+Campus+Buildings/Central+Utilities+Plant+(CUP)&pa rentId=main_campus_map_2017/FSU+Main+Campus+Buildings.

- US Debt Visualized: Stacked in \$100 dollar bills. (n.d.). Retrieved September 29, 2019, from http://demonocracy.info/infographics/usa/us_debt/us_debt.html.
- How to define a project scope? (2018, September 14). Retrieved September 29, 2019, from https://bloomcs.com/how-to-define-a-project-scope/.
- Gcr, & Gcr. (2018, November 20). GCR Staff. Retrieved September 29, 2019, from <u>http://gcrcloud.io/2018/11/14/how-to-accurately-measure-the-roi-of-unified-communications/</u>.